Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum of first n terms of the series $1 + (1 + x)y + (1 + x + x^2)y^2+(1+x+x^2+x^3)y^3+ ... $ is

KEAMKEAM 2012Sequences and Series

Solution:

Let $ E=1+(1+x) y+\left(1+x+x^{2}\right) y^{2}$
$+\left(1+x+x^{2}+x^{3}\right) y^{3}+\ldots$
$=\frac{1}{(1-x)}[(1-x)+\left(1-x^{2}\right) y+\left(1-x^{3}\right) y^{2} $
$+\left(1-x^{4}\right) y^{3}+\ldots n \text { th term] }$
[multiplying numerator and denominator by $(1-x)]$
$=\frac{1}{(1-x)}\left[\left(1+y+y^{2}+\ldots n\right.\right.$ th term $)$
$-x\left(1+x y+(x y)^{2}+\ldots n\right.$ th term $\left.)\right]$
$=\frac{1}{(1-x)}\left[\frac{1-y^{n}}{1-y}-x\left(\frac{1-x^{n} y^{n}}{1-x y}\right)\right]$