Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum of all the real roots of the equation $\left(e^{2 x}-4\right)\left(6 e^{2 x}-5 e^{x}+1\right)=0$ is

JEE MainJEE Main 2022Complex Numbers and Quadratic Equations

Solution:

$\left(e^{2 x}-4\right)\left(6 e^{2 x}-3 e^{x}-2 e^{x}+1\right)=0$
$\left(e^{2 x}-4\right)\left(3 e^{x}-1\right)\left(2 e^{x}-1\right)=0$
$e^{2 x}=4$ or $e^{x}=\frac{1}{3}$ or $e^{x}=\frac{1}{2}$
$\Rightarrow$ sum of real roots $=\frac{1}{2} \ln 4+\ln \frac{1}{3}+\ln \frac{1}{2}$
$=-\ln 3$