Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum of $ 24 $ terms of the following series $ \sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+\ldots $ is

UPSEEUPSEE 2007

Solution:

$\Sigma n=\frac{n(n+1)}{2}$
We have $\sqrt{2}+\sqrt{8}+\sqrt{18}+\sqrt{32}+\ldots$
$\quad=1 \sqrt{2}+2 \sqrt{2}+3 \sqrt{2}+4 \sqrt{2}+\ldots$
$=\sqrt{2}(1+2+3+4+\ldots$ upto 24 terms $)$
$=\sqrt{2} \times \frac{24 \times 25}{2}$
$=300 \sqrt{2}$