Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sum $\frac{1}{1 !(n-1) !}+\frac{1}{2 !(n-2) !}+\ldots \ldots \frac{1}{1 !(n-1) !}$ is equal to :

Binomial Theorem

Solution:

$\frac{1}{1 !(n-1) !}+\frac{1}{2 !(n-2) !}+\frac{1}{1 !(n-1) !} \ldots+=\frac{1}{n !}\left[{ }^n C_1+{ }^n C_2+\ldots .+{ }^n C_{n-1}\right]$ (multiply and divde by $n !$ )
$=\frac{1}{n !}\left[2^n-2\right]=\frac{2}{n !}\left(2^{n-1}-1\right)$