Thank you for reporting, we will resolve it shortly
Q.
The substitution $y=z^{\alpha}$ transforms the differential equation $\left(x^2 y^2-1\right) d y+2 x y^3 d x=0$ into a homogeneous differential equation for
Differential Equations
Solution:
$\left(x^2 z^{2 \alpha}-1\right) \alpha z^{\alpha-1} d z+2 x z^{3 \alpha} d x=0 $
or $\alpha\left(x^2 z^{3 \alpha-1}-z^{\alpha-1}\right) d z+2 x z^{3 \alpha} d x=0$
for homogeneous every term must be of the same degree, $3 \alpha+1=\alpha-1 \Rightarrow \alpha=-1 \Rightarrow A$