Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The straight line $ 3x+4y-5=0 $ and $ 4x=3y+15 $ intersect at the point P. On these lines the points Q and R are chosen so that PQ = PR. The slopes of the lines QR passing through (1, 2) are

KEAMKEAM 2007

Solution:

The given equations are $ 3x+4y-5=0 $ ...(i) and $ 4x-3y-15=0 $ ... (ii) Since, there lines are perpendicular to each other, so $ \angle QPR $ is right angle and $ PQ=PR $ .
Hence, $ \Delta PQR $ is a right angle isosceles triangle.
$ \therefore $ $ \angle PQR=\angle PRQ=45{}^\circ $
Slope of $ PQ=-\frac{3}{4} $ and slope of
$ PR=\frac{4}{3} $
Let slope of $ QR\text{ }=m $
$ \therefore $ $ \tan 45{}^\circ =\left| \frac{\frac{4}{3}-m}{1+\frac{4}{3}m} \right| $
$ \Rightarrow $ $ m=\frac{1}{7},-7 $