Q. The straight line $2 x-3 y=1$ divide the circular region $x^{2}+y^{2} \leq 6$ into two parts. If $S=\left\{\left(2, \frac{3}{4}\right) \cdot\left(\frac{5}{2}, \frac{3}{4}\right),\left(\frac{1}{4},-\frac{1}{4}\right) \cdot\left(\frac{1}{x}, \frac{1}{1}\right)\right\}$, then the number of point (s) in $S$ lying inside the smaller part is ....
Conic Sections
Solution: