Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The standard reduction potential data at $25^{\circ}C$ is given below.
$E^{\circ}(Fe^{3+}, Fe^{2+}) = + 0.77 V; E^{\circ}(Fe^{2+}, Fe) = - 0.44 V$
$E^{\circ}(Cu^{2+}, Cu ) = + 0.34 V; E^{\circ}(Cu^{+}, Cu) = + 0.52 V$
$E^{\circ}[O_{2(g)} + 4H^{+} + 4e^{-} \to 2H_{2}O] = + 1.23 V;$
$E^{\circ}[O_{2(g)} + 2H_{2}O + 4e^{-} \to 4OH^{-}] = + 0.40 V$
$E^{\circ} (Cr^{3+}, Cr) = - 0.74 V; E^{\circ}(Cr^{2+}, Cr) = - 0.91 V$
Match $E^{\circ}$ of the redox pair in List I with the values given in List II and select the correct answer using the code given below the lists:
List I List II
P. $E^{\circ}(Fe^{3+}, Fe)$ 1. $-0.18 V$
Q. $E^{\circ}(4H_{2}O \to 4H^{+} + 4OH^{-})$ 2. $-0.4 V$
R. $E^{\circ}(Cu^{2+} + Cu \to 2Cu^{+})$ 3. $-0.04 V$
S. $E^{\circ}(Cr^{3+}, Cr^{2+})$ 4. $-0.83 V$

Electrochemistry

Solution:

$Fe^{3+} +e^{-} \to Fe^{2+} ;\Delta G^{\circ}_{1} = -1F \times 0.77 $
$Fe^{2+} +2e^{-} \to Fe; \Delta^{\circ}G_{2} = +2F \times 0.44$
______________________________________
$Fe^{3+} +3e^{-} \to Fe; \Delta G^{\circ}_{3} = - 3F \times E^{\circ}_{Fe^{3+}/Fe}$
_______________________________________
$\Delta G^{\circ}_{3} =\Delta G^{\circ}_{1} + \Delta G^{\circ}_{2}$
$-3F \times E^{\circ}_{Fe^{3+}/Fe} = - 0.77F +0.88F$
$- 3E^{\circ}_{Fe^{3+}/Fe} = 0.11V$
$Q: 2H_{2}O \to O_{2} +4H^{+} +4e^{-} ; E^{\circ} = - 1.23V$
$O_{2} +2H_{2}O +4e^{-} \to 4OH^{-} ;E^{\circ} = + 0.40V$
___________________________________
$4H_{2}O \to 4H^{+} +4OH^{-} ; E^{\circ} = - 0.83V$
___________________________________
$R : Cu^{2+} +2e^{-} \to Cu ;E^{\circ} = +0.34V$
$2Cu^{2+} \to 2Cu^{+} +2e^{-} ;E^{\circ} = - 0.52V$
______________________________
$Cu^{2+} +Cu \to 2Cu^{+} ;E^{\circ} = - 0.18V$
________________________________
$S : Cr^{3+} +3e^{-} \to Cr ;\Delta G^{\circ}_{1} = +3F \times 0.74$
$Cr \to Cr^{2+} +2e^{-} ; \Delta G^{\circ}_{2} = - 2F \times 0.91$
__________________________________
$Cr^{3+} +e^{-} \to Cr^{2+} ; \Delta G^{\circ}_{3} = - 1F \times E^{\circ}_{Cr^{3+}/Cr^{2+}}$
________________________________________
$\Delta G^{\circ}_{3} =\Delta G^{\circ}_{1} +\Delta G^{\circ}_{2}$
$-1F \times E^{\circ}_{Cr^{3+}/Cr^{2+}} =2.22F -1.82F =0.4F$
$E^{\circ}_{Cr^{3+}/Cr^{2+}} = - 0.4V$