Thank you for reporting, we will resolve it shortly
Q.
The square of resultant of two equal forces is three times their product. Angle between the forces is
AMUAMU 2008
Solution:
Let $\theta$ be the angle between vectors $\vec{ P }$ and $\vec{ Q }$
whose resultant is $\vec{ R }$.
Here, $P=Q$ and $R^{2}=3 P Q=3 P^{2}$
As $ R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta$
$\therefore 3 P^{2}=P^{2}+P^{2}+2 P^{2} \cos \theta$
or $ 3 P^{2}-2 P^{2}=2 P^{2} \cos \theta$
or $ P^{2}=2 P^{2} \cos \theta$
or $ 1=2 \cos \theta$
$\therefore \cos \theta=\frac{1}{2}$,
thus, $\cos \theta=\cos 60^{\circ}$
or $ \theta=60^{\circ}=\frac{\pi}{3}$