Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution to the differential equation $\frac{ dy }{ dx } \ln x +\frac{ y }{ x }=\frac{ dy }{ dx }$ which passes through the point $\left( e ^2, 3\right)$ is

Differential Equations

Solution:

$ \frac{ dy }{ dx } \ln x +\frac{ y }{ x }=\frac{ dy }{ dx }$
$\frac{ d }{ dx }( y \ln x )=\frac{ dy }{ dx }$
$\text { Integrating }$
$y \ln x = y + C \text { Pass }\left( e ^2, 3\right)$
$3 \cdot 2=3+ C \Rightarrow C =3 $
$y \ln x = y +3 $
$ y =\frac{3}{\ln x -1} \cdot $