Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution set of the inequality $\left(\tan ^{-1} x\right)^{2} \leq\left(\tan ^{-1} x\right)+6$ is

NTA AbhyasNTA Abhyas 2020

Solution:

Let $\text{tan}^{- 1}x=u$
So, inequality becomes $u^{2}-u-6\leq 0$
$\Rightarrow -2\leq u\leq 3$
So, $-2\leq \text{tan}^{- 1}x\leq 3$
As $-\frac{\pi }{2} < \text{tan}^{- 1}x < \frac{\pi }{2}$
$\Rightarrow -2\leq \text{tan}^{- 1}x\leq 3, \, \forall x\in R$
Therefore, the solution set of the inequality $\left(\tan ^{-1} x\right)^{2} \leq\left(\tan ^{-1} x\right)+6$ is $(-\infty, \infty)$