Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution set of the inequality $ 4^{-x+\frac{1}{2}}-7.(2^{-x})-4<0 $ for $ x \in R $ is

AMUAMU 2011Linear Inequalities

Solution:

Let $2^{-x} = t$
$\therefore 2t^2 - 7t - 4 < 0$
$ \Rightarrow (2t + 1 )(t-4) < 0$
$\Rightarrow (2t + 1)(t - 4) < 0$
$\Rightarrow -\frac{1}{2} < t < 4$
Since, $2^{-x} $ is always positive,
$\therefore 0 < 2^{-x} < 4$
$\Rightarrow -2 < x < \infty$