Thank you for reporting, we will resolve it shortly
Q.
The solution set of the equation $4sin \theta cos \theta -2cos \theta -2\sqrt{3}sin \theta +\sqrt{3}=0$ in the interval $\left(0 , 2 \pi \right)$ is
NTA AbhyasNTA Abhyas 2020
Solution:
$4sin \theta cos \theta -2cos \theta -2\sqrt{3}sin \theta +\sqrt{3}=0$
$2cos \theta \left(2 sin \theta - 1\right)-\sqrt{3}\left(2 sin \theta - 1\right)=0$
$\left(2 cos \theta - \sqrt{3}\right)\left(2 sin \theta - 1\right)=0$
$\Rightarrow sin \theta =\frac{1}{2},cos \theta =\frac{\sqrt{3}}{2}$
$\theta =\frac{\pi }{6},\frac{5 \pi }{6},\frac{11 \pi }{6}$