Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of $y ^5 x + y - x \frac{ dy }{ dx }=0$ is -

Differential Equations

Solution:

$y^5 x+y-x \frac{d y}{d x}=0$
$\Rightarrow \frac{d y}{d x}-\frac{y}{x}=y^5$
$\Rightarrow \frac{1}{y^5} \frac{d y}{d x}-\frac{1}{x} \frac{1}{y^4}=1$
Let $\frac{1}{y^4}=t \Rightarrow \frac{-4}{y^5} \frac{d y}{d x}=\frac{d t}{d x}$
$\therefore-\frac{1}{4} \frac{d t}{d x}-\frac{t}{x}=1$
$\Rightarrow \frac{d t}{d x}+\frac{4 t}{x}=-4$
I.F. $=e^{\int \frac{4}{x} d x}=e^{4 \ln x}=x^4$
so solution is t.x $=-\int 4 \cdot x^4 d x+c$
$\Rightarrow \frac{1}{4}\left(\frac{x}{y}\right)^4+\frac{x^5}{5}=c$