Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of $\frac{xdy}{dx}=y\left(ln\,y-ln\,x+1\right)$ is

Differential Equations

Solution:

$\frac{dy}{dx}=\frac{y}{x}\left(1+ln \frac{y}{x}\right)$
Substitute $y=vx$
$\Rightarrow \frac{dy}{dx}=\frac{xdv}{dx}+v$
So, given equation becomes
$\frac{xdv}{dx}+v=v\left(1+ln\,v\right)$
$\Rightarrow \int \frac{dv}{v\,ln\,v}=\int \frac{dx}{x}$
$\Rightarrow ln\left(ln \frac{y}{x}\right)=ln\,x+ln\,c$
$\Rightarrow ln \frac{y}{x}=cx$.