Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of $x \frac{dy}{dx}+y=e^{x}$ is

Differential Equations

Solution:

$x \frac{dy}{dx}+y=e^{x}$
$\frac{dy}{dx}+\frac{1}{x}y=\frac{e^{x}}{x}$
It is a linear differential equation with
$I.F.=e^{\int \frac{1}{x}dx}=e^{logx}=x$
Now, solution is $y\cdot x=\int \frac{e^{x}}{x}\cdot x\,dx+k$
$\Rightarrow yx=e^{x}+k$
$\Rightarrow y=\frac{e^{x}}{x}+\frac{k}{x}$