Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the equation $\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin -y+y \cos y}$

ManipalManipal 2013

Solution:

$(y \cos y+\sin y) d y=(2 x \log x+x) d x$
$y \sin y-\int \sin y\, d y+\int \sin\, y \,d y$
$=x^{2} \log x-\int x^{2} \cdot \frac{1}{x} d x+\int x d x+c$
$\therefore y \sin y=x^{2} \log x+c$