Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the equation $2 \cosh 2 x+10 \sinh 2 x=5$ is

TS EAMCET 2019

Solution:

We have,
$2 \cos\,h 2 x+10 \sin\,h 2 x=5 $
$2\left(\frac{e^{2 x}+e^{-2 x}}{2}\right)+10\left(\frac{e^{2 x}-e^{-2 x}}{2}\right)=5 $
$2 e^{2 x}+2 e^{-2 x}+10 e^{2 x}-10 e^{-2 x}=10 $
$12 e^{2 x}-8 e^{-2 x}-10=0 $
$6 e^{2 x}-4^{-2 x}-5=0$
$6\left(e^{2 x}\right)^{2}-5 e^{2 x}-4=0 $
$6\left(e^{2 x}\right)^{2}-8 e^{2 x}+3 e^{2 x}-4=0 $
$\left(2 e^{2 x}+1\right)\left(3 e^{2 x}-4\right)=0$
$\Rightarrow \, 3 e^{2 x}-4=0, 2 e^{2 x}+1 \neq 0 $
$ \Rightarrow \, e^{2 x}=\frac{4}{3} $
$ \Rightarrow \, 2 x=\log \frac{4}{3}$
$ \Rightarrow \, x=\frac{1}{2} \log \frac{4}{3}$