Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $ x\frac{dy}{dx}+2y={{x}^{2}} $ is:

KEAMKEAM 2006

Solution:

$ x=\frac{dy}{dx}+2y={{x}^{2}} $
On differentiating w.r.t $ x, $
we get $ \frac{dy}{dx}+\frac{2}{x}y=x $ Integrating factor
$={{e}^{\int{\frac{2}{x}dx}}}={{x}^{2}} $
$ \therefore $ Required solution is $ y.{{x}^{2}}=\int{{{x}^{3}}}dx=\frac{{{x}^{4}}}{4}+c=\frac{{{x}^{4}}+c}{4} $
$ \therefore $ $ y=\frac{{{x}^{4}}+c}{4{{x}^{2}}} $