Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $x\frac{d y}{d x}=yln \left(\frac{y^{2}}{x^{2}}\right)$ is (where, $c$ is an arbitrary constant)

NTA AbhyasNTA Abhyas 2020Differential Equations

Solution:

Putting $y=xv \, $ and $ \, \frac{d y}{d x}=v+x\frac{d v}{d x}$
So, $v+x\frac{d v}{d x}=2vln v$
$\Rightarrow \, \displaystyle \int \frac{d x}{x}=\displaystyle \int \frac{d v}{v \left(\right. 2 ln v - 1 \left.\right)}$
On integrating, we get,
$ \, y=x\cdot e^{c x^{2} + \, \frac{1}{2}}$