Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $ \left( \frac{dy}{dx} \right)\tan y=\sin (x+y)+\sin (x-y) $ is

Rajasthan PETRajasthan PET 2008

Solution:

Given, differential equation is
$ \left( \frac{dy}{dx} \right)\tan y=\sin (x+y)+\sin (x-y) $
$ \Rightarrow $ $ \left( \frac{dy}{dx} \right)\tan y=2\sin x\cos y $
$ \Rightarrow $ $ \frac{\sin y}{{{\cos }^{2}}y}dy=2\sin xdx $
On integrating both sides, we get $ \frac{1}{\cos y}=-2\cos x+c $
$ \Rightarrow $ $ \sec y+2\cos x=c $