Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $\frac{d y}{d x}=y \tan x-2 \sin x$ is

Differential Equations

Solution:

$\frac{d y}{d x}=y \tan x-2 \sin x$
$\frac{d y}{d x}-y \tan x=-2 \sin x$
I.F. $=e^{-\int \tan x d x}=|\cos x|$
$y \cos x=\frac{\cos 2 x}{2}+k$
$\Rightarrow y=\frac{\cos 2 x}{2 \cos x}+k \sec x \Rightarrow y=\cos x+c \sec x$