Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $\frac{d y}{d x}=\frac{y^2-y-2}{x^2+2 x-3}$ is

Differential Equations

Solution:

$\frac{d y}{d x}=\frac{y^2-y-2}{x^2+2 x-3}$
$\frac{d y}{(y-2)(y+1)}=\frac{d y}{(x+3)(x-1)}$
$\Rightarrow \int \frac{d y}{(y-2)(y+1)}=\int \frac{d y}{(x+3)(x-1)}$
$\Rightarrow \frac{1}{3} \int\left(\frac{1}{y-2}-\frac{1}{y+1}\right) d y=\frac{1}{4} \int\left(\frac{1}{x-1}-\frac{1}{x+3}\right) d x$
$\Rightarrow \frac{1}{3} \ln \left|\frac{y-2}{y+1}\right|=\frac{1}{4} \ln \left|\frac{x-1}{x+3}\right|+c$