Thank you for reporting, we will resolve it shortly
Q.
The solution of the differential equation $\frac{d y}{d x}=\frac{2 x y}{x^2-1-2 y}$ is
Differential Equations
Solution:
$\frac{d y}{d x}=\frac{2 x y}{x^2-1-2 y} $
$\Rightarrow x^2 d y-(1+2 y) d y=2 x y d x$
or $2 x y d x-x^2 d y=-(1+2 y) d y$
or $\frac{y d\left(x^2\right)-x^2 d y}{y^2}=-\left(\frac{1}{y^2}+\frac{2}{y}\right) d y$
$d\left(\frac{x^2}{y}\right)=-\left(\frac{1}{y^2}+\frac{2}{y}\right) d y$
Integrating $\frac{x^2}{y}=\frac{1}{y}-2 \ell$ ny $+c$