Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $cos \,x \,sin\, y\, dx + sin\, x\, cos \,y \,dy = 0$ is

Differential Equations

Solution:

$cosx\, siny\, dx + sinx \,cosy \,dy = 0$
$\frac{cos\,xdx}{sin\,x}=-\frac{cos\,ydx}{sin\,y}$
On integrating, we get
$log \,sinx = - log\, siny + logc$
$\Rightarrow log\,sinx+log\,siny=logc$
$\Rightarrow sinx\,siny=c$