Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of equation
$ {{9}^{x}}-{{2}^{x+\frac{1}{2}}}={{2}^{x+\frac{3}{2}}}-{{3}^{2x-1}} $ is

Rajasthan PETRajasthan PET 2006

Solution:

Given, equation is
$ {{9}^{x}}-{{2}^{x+\frac{1}{2}}}={{2}^{x+\frac{3}{2}}}-{{3}^{2x-1}} $
$ \Rightarrow $ $ {{9}^{x}}-{{2}^{x}}.\sqrt{2}={{2}^{x}}\sqrt{8}-{{9}^{x}}{{.3}^{-1}} $
$ \Rightarrow $ $ {{9}^{x}}+\frac{{{9}^{x}}}{3}={{2.2}^{x}}\sqrt{2}+{{2}^{x}}\sqrt{2} $
$ \Rightarrow $ $ \frac{4}{3}{{9}^{x}}=3\sqrt{2}{{.2}^{x}} $
$ \Rightarrow $ $ {{\left( \frac{9}{2} \right)}^{x}}=\frac{9\sqrt{2}}{4} $
$ \Rightarrow $ $ {{\left( \frac{9}{2} \right)}^{x}}=\frac{9}{2\sqrt{2}}=\frac{9}{\sqrt{8}} $
$ \Rightarrow $ $ x={{\log }_{(9/2)}}\left( \frac{9}{\sqrt{8}} \right) $