Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of differential equation $\frac{d y}{d x}=\cos x(2-y \operatorname{cosec} x)$ is

Differential Equations

Solution:

$\frac{d y}{d x}=2 \cos x-y \cot x$
$ \frac{d y}{d x}+y \cot x=2 \cos x$
IF $=e^{\int \cot x d x}=e^{\ell n \sin x}=\sin x$
complete solution
$y \cdot \sin x=\int \sin x \cdot 2 \cos x d x$
$y \sin x=\sin ^2 x+C$
$y=\sin x+C \operatorname{cosec} x$