Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of differential equation $(1 + x)y dx + (1 - y)x\, dy = 0$ is

Differential Equations

Solution:

Given, $(1 + x)y \,dx + (1 - y)x \,dy = 0$
$\Rightarrow \frac{\left(1-y\right)}{y}dy+\frac{\left(1+x\right)dx}{x} = 0$
$\Rightarrow \int \left(\frac{1}{y}-1\right)+\left(\frac{1}{x}+1\right)dx=0$
$\Rightarrow log \,y - y + log \,x = C$
$\Rightarrow log\, \left(xy\right) + x - y = C$