Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solubility product of AgCl is $4.0 \times 10^{-10}$ at 298 K. The solubility of AgCl in 0.04 M $CaCl_2$ will be

Equilibrium

Solution:

$ \begin{array}{l} x =[ Ag ]=\left[ A ^{-}\right]+[ HA ]---(1) \\ \text { from } \frac{[4 A ]}{[ A ]}=10 \\ x =\left[ Ag ^{+}\right]=\left[ A ^{-}\right]+10\left[ A ^{-}\right]=11\left[ A ^{-}\right] \\ x =\left[ Ag ^{+}\right]=11 \times\left[ A ^{-}\right]---(2) \end{array} $ equation (2) can be written as $ \begin{array}{l} A ^{-}+ H _{2} O \rightleftharpoons HA + OH \\ kw =\left[ OH ^{-}\right]\left[ H ^{+}\right] \\ {\left[ OH ^{-}\right]=\frac{ kw }{\left[ H ^{+}\right]}=\frac{10^{-14}}{10^{-4}}=10^{-5}} \end{array} $ At eq $\left[ A ^{+}\right]=\left[ OH ^{-}\right]=10^{-5}$ from eq (1) $\left[ A ^{+}\right]=\left[ A ^{-}\right]=10^{-5}$ $ \begin{array}{l} \operatorname{krp}=\left[ Ag ^{+}\right]\left[\left( A ^{-}\right)+( HA )\right] \\ =10^{-5} \times 11 \times\left[ A ^{-}\right] \\ =10^{-5} \times 11 \times\left[10^{-5}\right] \\ =10^{-5} \times 11=\frac{11}{10} \times 10^{-10} \times 10 \\ =1.1 \times 10^{-9} \end{array} $