Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The smallest value of $x^{2}-3 x+3$ in the interval $\left(-3, \frac{3}{2}\right)$ is

Complex Numbers and Quadratic Equations

Solution:

We have, $x^{2}-3 x+3$
$=\left(x-\frac{3}{2}\right)^{2}+3-\frac{9}{4}$
$=\left(x-\frac{3}{2}\right)^{2}+\frac{3}{4}$
$\therefore $ smallest value $=\frac{3}{4}$,
which lies in the interval $\left(-3, \frac{3}{2}\right)$