Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The sides $B C, C A$ and $A B$ of a $\triangle A B C$ are of lengths $a, b$, and $c$ respectively. If $D$ is the mid-point of $B C$ and $A D$ is perpendicular to $A C$, then the value of $\cos A \cos C$ is

Trigonometric Functions

Solution:

image
Using sine rule in $\triangle A C D$,
$ \frac{\sin \left(90^{\circ}-C\right)}{b}=\frac{\sin 90^{\circ}}{\frac{a}{2}}$
$\Rightarrow \cos C=\frac{2 b}{a} $
and in $ \Delta A B D,$
$ \frac{\sin \left(A-90^{\circ}\right)}{\frac{a}{2}}=\frac{\sin \left(90^{\circ}+C\right)}{c}$
$\Rightarrow-\frac{\cos A}{\frac{a}{2}}=\frac{\cos C}{c} \Rightarrow \cos A=-\frac{b}{c}$
$\Rightarrow \frac{b^2+c^2-a^2}{2 b c}=-\frac{b}{c} \Rightarrow c^2-a^2=-3 b^2$
$\therefore \cos A \cos C=-\frac{2 b^2}{a c}=\frac{2}{3 a c}\left(c^2-a^2\right)$