Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The shortest wavelength in Lyman series is 912 mathringA. Then the longest wavelength inthe series must be
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The shortest wavelength in Lyman series is $912 \,\mathring{A}$. Then the longest wavelength inthe series must be
TS EAMCET 2020
A
$9120\,\mathring{A}$
B
$1824 \,\mathring{A}$
C
$1216 \,\mathring{A}$
D
$2432 \,\mathring{A}$
Solution:
For H-atom (Lyman series formula)
$\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{n_{2}^{2}}\right)$
For shortest wavelength $\left(n_{2}=\infty\right)$, so
$\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)$
$ \Rightarrow \frac{1}{912 A}=R\left(\frac{1}{1}-\frac{1}{\infty}\right) $
$\Rightarrow \quad \frac{1}{912 \,\mathring{A}}=R(1-0) $
$\Rightarrow R=\frac{1}{912}(\mathring{A})^{-1} \ldots (i) $
For longest wavelength $\left(n_{2}=2\right)$, so
$\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right) $
$\Rightarrow \frac{1}{\lambda}=\frac{1}{912 \,\mathring{A}}\left(\frac{1}{1}-\frac{1}{4}\right)$
$ \Rightarrow \frac{1}{\lambda}=\frac{1}{912 \,\mathring{A}}\left(\frac{3}{4}\right) $
$\Rightarrow \frac{1}{\lambda}=\frac{1}{1216 \,\mathring{A}} $
$\Rightarrow \lambda=1216 \mathring{A}$