Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The shortest wavelength in Lyman series is $912 \,\mathring{A}$. Then the longest wavelength inthe series must be

TS EAMCET 2020

Solution:

For H-atom (Lyman series formula)
$\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{n_{2}^{2}}\right)$
For shortest wavelength $\left(n_{2}=\infty\right)$, so
$\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)$
$ \Rightarrow \frac{1}{912 A}=R\left(\frac{1}{1}-\frac{1}{\infty}\right) $
$\Rightarrow \quad \frac{1}{912 \,\mathring{A}}=R(1-0) $
$\Rightarrow R=\frac{1}{912}(\mathring{A})^{-1} \ldots (i) $
For longest wavelength $\left(n_{2}=2\right)$, so
$\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right) $
$\Rightarrow \frac{1}{\lambda}=\frac{1}{912 \,\mathring{A}}\left(\frac{1}{1}-\frac{1}{4}\right)$
$ \Rightarrow \frac{1}{\lambda}=\frac{1}{912 \,\mathring{A}}\left(\frac{3}{4}\right) $
$\Rightarrow \frac{1}{\lambda}=\frac{1}{1216 \,\mathring{A}} $
$\Rightarrow \lambda=1216 \mathring{A}$