Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The set of points where the function f given by f(x) = |2x - 1| sinx is differentiable is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The set of points where the function $f$ given by $f(x) = |2x - 1|\, sinx$ is differentiable is
Continuity and Differentiability
A
$R$
14%
B
$R-\left\{\frac{1}{2}\right\}$
48%
C
$\left(0, \infty\right)$
27%
D
None of these
11%
Solution:
$f \left(x\right)=\left|2x-1\right|sinx$
$f(x) = \begin{cases} -(2x-1)sin\,x, & \text{ $x < 1/2$} \\[2ex] (2x-1)sin\,x, & \text{ $x \ge 1/2$} \end{cases}$
$Lf '\left(\frac{1}{2}\right)=$ $\displaystyle \lim_{h \to 0^-} $ $\frac{f \left(1/2+h\right)-f \left(1/2\right)}{h}$
$=\displaystyle \lim_{h \to 0^-}$ $\frac{-\left[2\left(1/2+h\right)-1\right]sin\left(1/2+h\right)-0}{h}$
$=\displaystyle \lim_{h \to 0^-} $$\frac{-2h\,sin\left(1/2+h\right)}{h}=-2\,sin\left(1/2\right)$
$Rf '\left(1/2\right)=$ $\displaystyle \lim_{h \to 0^+} $ $\frac{f \left(1/2+h\right)-f \left(1/2\right)}{h}$
$=\displaystyle \lim_{h \to 0^+}$ $\frac{\left[2\left(1/2+h\right)-1\right]sin\left(1/2+h\right)-0}{h}$
$=\displaystyle \lim_{h \to 0^+}$ $\frac{2h\,sin\left(1/2+h\right)}{h}=2sin(1/2)$
$Lf'(1/2) \ne Rf'(1/2)$
So, $f(x)$ is not differentiable at $x = 1/2$
Hence $f(x)$ is differentiable $\forall \,x \in R-\left\{\frac{1}{2}\right\}$