Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The set of all values of $k$ for which $\left(\tan ^{-1} x \right)^{3}+\left(\cot ^{-1} x \right)^{3}= k \pi^{3}, x \in R$, is the interval :

JEE MainJEE Main 2022Inverse Trigonometric Functions

Solution:

$Let S =\left(\tan ^{-1} x +\cot ^{-1} x \right)-3 \tan ^{-1} x \cdot \cot ^{-1} x \left(\tan ^{-1} x +\cot ^{-1} x \right)$
$=\frac{\pi^{3}}{8}-\frac{3 \pi}{2} \tan ^{-1} x \left(\frac{\pi}{2}-\tan ^{-1} x \right)$
$=\frac{3 \pi}{2}\left(\tan ^{-1} x -\frac{\pi}{4}\right)^{2}+\frac{\pi^{3}}{32}$
$\Rightarrow \frac{\pi^{3}}{32} \leq S <\frac{7}{8} \pi^{3}$
$=\frac{\pi^{3}}{32} \leq K \pi^{3}<\frac{7}{8} \pi^{3}$
$ \frac{1}{32} \leq K <\frac{7}{8}$