Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The S.D. of the following data is nearly
${x_i}$ 140 145 150 155 160 165 170 175
${f_i}$ 4 6 15 30 36 24 8 2

Statistics

Solution:

Let us assume an arbitary mean a = 155.
Following table is constructed :
$X_{i}$ $f_{i}$ $u_{i} - \frac{X_{i} - 155}{5}$ $u_{i}^{2}$ $f_{i} u_{i}$ $f_{i} u_{i}^{2}$
140 4 -3 9 -12 36
145 6 -2 4 -12 24
150 15 -1 1 -15 15
155 30 0 0 0 0
160 36 1 1 36 36
165 24 2 4 48 96
170 8 3 9 24 72
175 2 4 16 8 32
Total 125 77 311

$\therefore $ Variance = $= \sigma^{2}=c^{2} \left(\frac{\sum f_{i} u_{i}^{2}}{n} -\left(\frac{\sum f_{i}u_{i}}{n}\right)^{2}\right) $
$= 25 \times\left(\frac{311}{125}-\left(\frac{77}{125}\right)^{2}\right)$
$=25 \times\frac{311}{125}-\frac{25\times77\times77}{125\times125} $
$= 62.2 -9.4864 = 52.7136 $
$\Rightarrow \:\: S.D = \sqrt{52.7136} = 7.26$ nearly