Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The roots of the equation 6 sin -1( x3-6x2+8x+(1/2) )=π , are
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The roots of the equation $ 6\,{{\sin }^{-1}}\left( {{x}^{3}}-6{{x}^{2}}+8x+\frac{1}{2} \right)=\pi , $ are
J & K CET
J & K CET 2015
Inverse Trigonometric Functions
A
in AP
49%
B
in GP
12%
C
in AP and GP both
23%
D
neither in AP nor in GP
16%
Solution:
Given equations is $ 6{{\sin }^{-1}}\left( {{x}^{3}}-6{{x}^{2}}+8x+\frac{1}{2} \right)=\pi $
$ \Rightarrow $ $ {{\sin }^{-1}}\left( {{x}^{3}}-6{{x}^{2}}+8x+\frac{1}{2} \right)=\frac{\pi }{6} $
$ \Rightarrow $ $ {{x}^{3}}-6{{x}^{2}}+8x+\frac{1}{2}=\sin \frac{\pi }{6} $
$ \Rightarrow $ $ {{x}^{3}}-6{{x}^{2}}+8x+\frac{1}{2}=\frac{1}{2} $
$ \Rightarrow $ $ x({{x}^{2}}-6x+8)=0 $
$ \Rightarrow $ $ x(x-2)(x-4)=0 $
So, roots are $ x=0,2,4 $
Hence, these roots are in AP.