Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The resultant of two rectangular simple harmonic motions of the same frequency and unequal amplitudes but differing in phase by $ \frac{\pi }{2} $ is

VMMC MedicalVMMC Medical 2011

Solution:

If first equation is $ {{y}_{1}}={{a}_{1}}\sin \omega t $ $ \Rightarrow $ $ \sin \omega t=\frac{{{y}_{1}}}{{{a}_{1}}} $ ?(i) Then second equation will be $ {{y}_{2}}={{a}_{2}}\sin (\omega t+\pi /2)={{a}_{2}}\cos \omega t $ $ \Rightarrow $ $ \cos \omega t=\frac{{{y}_{2}}}{{{a}_{2}}} $ ?(ii) By squaring and adding Eqs. (i) and (ii), we get $ {{\sin }^{2}}\omega t+{{\cos }^{2}}\omega t=\frac{y_{1}^{2}}{a_{1}^{2}}+\frac{y_{2}^{2}}{a_{2}^{2}} $ $ \Rightarrow $ $ \frac{y_{1}^{2}}{a_{2}^{2}}+\frac{y_{2}^{2}}{a_{2}^{2}}=1 $ This is the equation of ellipse.