Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The resultant of the three vectors O A, O B and O C shown in figure is <img class=img-fluid question-image alt=image src=https://cdn.tardigrade.in/img/question/physics/3960b4eb789708fe0c09ff3831ac8d80-.png />
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The resultant of the three vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ shown in figure is
Motion in a Plane
A
$r$
0%
B
$2r$
0%
C
$r(1+\sqrt{2})$
100%
D
$r(\sqrt{2}-1)$
0%
Solution:
If we assume horizontal and vertical as $X$ and $Y$ axes, then
$\overrightarrow{O A}=r \hat{j}, \overrightarrow{O C}=r \hat{i}$
$\overrightarrow{O B}=r \cos 45^{\circ} \hat{i}+r \sin 45^{\circ} \hat{j}$
$\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\left(r+\frac{r}{\sqrt{2}}\right) \hat{i}+\left(r+\frac{r}{\sqrt{2}}\right) \hat{j}$
$|\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}|=\sqrt{\left(r+\frac{r}{\sqrt{2}}\right)^{2}+\left(r+\frac{r}{\sqrt{2}}\right)^{2}}$
$=\sqrt{r^{2}\left(\frac{\sqrt{2}+1}{\sqrt{2}}\right)^{2} \times 2}=r(1+\sqrt{2})$