Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The real part of $\frac{\left(1+i\right)^{2}}{\left(3-i\right)}$ is

Complex Numbers and Quadratic Equations

Solution:

$\left(1+i\right)^{2}=1+i^{2}+2i=2i$
$\therefore \, \frac{\left(1+i\right)^{2}}{3-i}$
$=\frac{2i\left(3+i\right)}{3^{2}-i^{2}}$
$=\frac{6i-2}{10}$
$=\frac{-1+3i}{5}$
$\therefore \, $ Real part $=\frac{-1}{5}$