Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The ratio of the wavelength of the last line of the Balmer series to last line of Lyman series is

MHT CETMHT CET 2021

Solution:

Wavelength of spectral line in hydrogen atom $(z=1)$ given as
$\frac{1}{\lambda}=R\left[\frac{1}{n_1^2}-\frac{1}{n_2^2}\right] \ldots \text { (i) }[\because Z=1]$
For last line of Lyman series,
$n_1=1 \text { and } n_2=\infty$
$\therefore$ From Eq. (i), we have
$ \frac{1}{\lambda_L}=R\left(\frac{1}{1^2}-\frac{1}{\infty}\right)=R$
$ \Rightarrow \lambda_L=\frac{1}{R} \cdots \cdots(i i)$
Similarly, for last line of Balmer series, $n_1=2$ and $n_2=\infty$
$\therefore$ From Eq. (i), we get
$ \frac{1}{\lambda_B}=R\left(\frac{1}{2^2}-\frac{1}{\infty}\right)=\frac{R}{4} $
$ \Rightarrow \lambda_B=\frac{4}{R}$
Hence, from Eq. (i) and Eq. (ii), we get
$ \frac{\lambda_L}{\lambda_B}=\frac{1 / R}{4 / R}=\frac{1}{4} $
$\text { or } \lambda_L: \lambda_B=1: 4 $
$ \Rightarrow \lambda_B: \lambda_L=4: 1$