Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The ratio of the radii of gyration of a circular disc and a circular ring of the same radii about a tangential axis perpendicular to plane of disc or ring is

AFMCAFMC 2010System of Particles and Rotational Motion

Solution:

Radius of gyration $K=\sqrt{\frac{I}{m}}$
(where $I$ is moment of inertia)
$K_{d i s c}=\sqrt{\frac{\frac{1}{2} m R^{2}+m R^{2}}{m}}=\sqrt{\frac{3}{2}} R$
$K_{\text {ring }}=\sqrt{\frac{m R^{2}+m R^{2}}{m}}=\sqrt{2} R$
$\therefore \frac{K_{\text {disc }}}{K_{\text {ring }}}=\frac{\sqrt{\frac{3}{2}}}{\sqrt{2}}=\frac{\sqrt{3}}{2}$