Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The ratio of the frequency corresponding to the third line in Lyman series of hydrogen atomic spectrum to that of the first line in Balmer series of Li2+ spectrum is

KEAMKEAM 2012

Solution:

For Lyman series, $n_{1}=1$

and for third line, $n_{2}=4$

$\bar{v}_{1} =R_{ H } Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$

$=R_{ H }(1)^{2}\left(\frac{1}{1}-\frac{1}{16}\right)=\frac{15}{16} R_{ H }$

$(\because$ For $H$ atom $Z=1)$

For Balmer series, $n_{1}=2$ and for first line, $n_{2}=3$

$\bar{v}_{2} =R_{ H } Z^{2}\left(\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right) \left[\text { For } Li ^{2+}, Z=3\right] $

$=R_{ H }(3)^{2}\left(\frac{1}{4}-\frac{1}{9}\right)=9 R_{ H }\left(\frac{5}{36}\right) $

$\frac{v_{1}}{v_{2}} =\frac{15 R_{ H } \times 36}{16 \times 9 \times 5 R_{ H }}=\frac{3}{4}$