Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^{n}$ is $\sqrt{6}:1.$ If $n=\frac{20}{\lambda },$ then the value of $\lambda $ is

NTA AbhyasNTA Abhyas 2020Binomial Theorem

Solution:

$\frac{T_{5}}{T_{n - 5 + 2}}= \, \frac{^{n} C_{4} \left(2^{\frac{1}{4}}\right)^{n - 4} \cdot \left(3^{- \frac{1}{4}}\right)^{4}}{^{n} C_{n - 4} \left(2^{\frac{1}{4}}\right)^{4} \cdot \left(3^{- \frac{1}{4}}\right)^{n - 4}}$
$\frac{T_{5}}{T_{n - 5 + 2}}= \, \frac{2^{\frac{n - 4}{4}} \cdot 3^{\frac{n - 4}{4}}}{6}=\sqrt{6}$
$\Rightarrow 6^{\frac{n - 4}{4}}=6^{\frac{3}{2}}$
$\Rightarrow n=10=\frac{20}{\lambda }$
$\Rightarrow \lambda =2$