Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The ratio of the dimensions of Plancks constant and that of the moment of inertia is the dimension of

JIPMERJIPMER 2007Physical World, Units and Measurements

Solution:

$E=h v $
$\Rightarrow h=$ Plancks constant $=\frac{E}{V} $
$\therefore [h]=\frac{[E]}{[v]}=\frac{\left[M L^{2} T^{-2}\right]}{\left[T^{-1}\right]}$
$=\left[M L^{2} T^{-1}\right] $
and $ I=$ moment of inertia $=M R^{2} $
$\Rightarrow [I]=[M]\left[L^{2}\right]=\left[M L^{2}\right] $
Hence, $ \frac{[h]}{[I]}=\frac{\left[M L^{2} T^{-1}\right]}{\left[M L^{2}\right]}=\left[T^{-1}\right] $
$=\frac{1}{[T]}=$ dimensions of frequency
Alternative: $\frac{h}{I}=\frac{E / v}{I} $
$=\frac{E \times T}{I}=\frac{\left(k g-m^{2} / s^{2}\right) \times s}{\left(k g-m^{2}\right)} $
$=\frac{1}{s}=\frac{1}{\text { time }}=$ frequency
Thus, dimensions of $\frac{h}{I}$ is same as of frequency.