Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The ratio of minimum wavelengths of Lyman and Balmer series will be

NTA AbhyasNTA Abhyas 2022

Solution:

The series end of Lyman series corresponds to transition from $n_{ i }=\infty$ to $n_{ f }=1$, corresponding to the wavelength,
$\frac{1}{\left(\lambda_{\min }\right)_{ L }}=R\left[\frac{1}{1}-\frac{1}{\infty}\right]=R$
$\Rightarrow\left(\lambda_{\min }\right)_{ L }=\frac{1}{R}=91.2 \,nm$
For last line of Balmer series,
$\frac{1}{\left(\lambda_{\min }\right)_{B}}=R\left[\frac{1}{(2)^{2}}-\frac{1}{(\infty)^{2}}\right]=\frac{R}{4} $
$\Rightarrow\left(\lambda_{\min }\right)_{B}=\frac{4}{R}=364.8 \,nm$
Dividing equation (i) by (ii), we get,
$\therefore \frac{\left(\lambda_{\min }\right)_{ L }}{\left(\lambda_{\min }\right)_{ B }}=0.25$