Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The rate of decomposition for methyl nitrite and ethyl nitrite can be given in terms of rate constant k1 and k2 respectively. The energy of activation for the two reactions are $152.30 \, kJ \, mol^{- 1} \, and \, 157.7 \, kJ \, mol^{- 1}$ as well as frequency factors are $10^{13}$ and $10^{14}$ respectively for the decomposition of methyl and ethyl nitrite. Calculate the temperature at which rate constant will be same for the two reactions.

NTA AbhyasNTA Abhyas 2020Chemical Kinetics

Solution:

$ \mathrm{k}=\mathrm{A} \mathrm{e}^{\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}} $
For methyl nitrite $\mathrm{k}_1=10^{13} \mathrm{e}^{[-152300 /(8.314 \times \mathrm{T})]}$
For ethyl nitrite $\mathrm{k}_2=10^{14} \mathrm{e}^{[-157700 /(8.314 \times \mathrm{T})]}$
If $\mathrm{k}_1=\mathrm{k}_2$ then
$ 10^{13} \mathrm{e}^{[-152300 /(8.314 \times \mathrm{T})]}=10^{14} \mathrm{e}^{[-157700 /(8.314 \times \mathrm{T})]} $
Or $2.303 \log 10=\frac{157700-152300}{8.314 \times \mathrm{T}}$
$ \mathrm{T}=282 \mathrm{~K} $