Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
The rate constant of a reaction is 1.5 × 10-3 at 25° C and 2.1 × 10-2 at 60° C. The activation energy is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The rate constant of a reaction is $1.5 \times 10^{-3}$ at $25^{\circ} C$ and $2.1 \times 10^{-2}$ at $60^{\circ} C$. The activation energy is
BITSAT
BITSAT 2018
A
$\frac{35}{333} R \log _{e} \frac{2.1 \times 10^{-2}}{1.5 \times 10^{-2}}$
18%
B
$\frac{298 \times 333}{35} R \log _{e} \frac{21}{1.5}$
55%
C
$\frac{298 \times 333}{35} R \log _{e} 2.1$
27%
D
$\frac{298 \times 333}{35} R \log _{e} \frac{2.1}{1.5}$
0%
Solution:
$T_{1}=273+25=298 \,K$
$T_{2}=273+60=333\, K$
$\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.3 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right) $
$\log _{e} \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right)$
or $\log _{e} \frac{2.1 \times 10^{-2}}{1.5 \times 10^{-3}}=\frac{E_{a}}{R}\left(\frac{35}{333 \times 298}\right)$
$\therefore E_{a}=\frac{298 \times 333}{35} \times R \times \log _{e} \frac{21}{1.5}$