Given, $f(x)=\sin [x],-\frac{\pi}{4}< x< \frac{\pi}{4}$
Clearly, $\sin 0=0$
and $\left[\frac{\pi}{4}\right]=\left[\frac{3.14}{4}\right]=0 $
$\therefore \forall x \in\left[0, \frac{\pi}{4}\right], \sin [x]=0$
$\forall x \in\left[-\frac{\pi}{4}, 0\right),[x]=-1 $
$ \therefore \sin [x]=\sin (-1)=-\sin 1$
So, the range of $f(x)$ is $\{0,-\sin 1\}$.