Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The radius of first Bohr orbit of hydrogen atom is $0.529 \AA$. Calculate the radii of (i) the third orbit of $He ^{+}$ion and (ii) the second orbit of $Li ^{2+}$ ion.

KEAMKEAM 2007Structure of Atom

Solution:

Let us consider the $n ^{\text {th }}$ bohr orbit,
$ r_{n}=\frac{n^{2} h^{2}}{4 \pi^{2} mZe ^{2}} $
For hydrogen atom $z =1$, first orbit $n =1$
$ r _{1}=\frac{ h ^{2}}{4 \pi r ^{2} me ^{2}}=0.592 A ^{0} $
(i)For $He ^{+}$ion, $Z =2$, third orbit, $n =3$
$ r _{3}\left( He ^{+}\right)=\frac{3^{2} h ^{2}}{4 \pi^{2} m \times 2 \times e ^{2}} $
$ =\frac{9}{2}\left[\frac{ h ^{2}}{4 \pi^{2} me ^{2}}\right] $
$ =\frac{9}{2} \times 0.592 $
$ =2.380 A ^{0} $
(ii) For $Li ^{2+}$ ion, $Z =3$, second orbit $n =2$
$ \begin{array}{l} r _{2}\left( Li ^{2+}\right)=\frac{2^{2} h ^{2}}{4 \pi^{2} m \times 3 \times e ^{2}} \\ =\frac{4}{3}\left[\frac{ h ^{2}}{4 \pi^{2} me ^{2}}\right] \\ =0.705 A ^{0} \end{array} $