Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The radius of electron orbit and the speed of electron in the ground state of hydrogen atom is $5.30 \times 10^{-11}\, m$ and $2.2 \times 10^6 \,m \,s^{-1}$ respectively, then the orbital period of this electron in second excited state will be

Atoms

Solution:

Here, $r_1 = 5.30 \times 10^{-11} m$;
$ v_1 = 2.2 \times 10^6 \,m \,s^{-1}$
In the second excited state,
$r_n = n^2 r_1 , v_n = \frac{v_1}{n}$
$\therefore r_2 = 4 r_1 = 4\times 5.30 \times 10^{-11} m$
$= 2.12 \times 10^{-10} m$
ans $v_2 = \frac{v_1}{2}$
$ = \frac{2.2 \times 10^6}{2} m s^{-1}$
$ = 1.1 \times 10^6 \,m\,s^{-1}$
Since, orbit period
$(T) = \frac{2\pi r_2}{v_2} $
$ = \frac{2\times 3.14\times 2.12\times 10^{-10}}{1.1\times 10^6} $
$ =\frac{13.31\times 10^{-16}}{1.1}$
$ = 1.21\times 10^{-15} s$